When Not to Act?

Michael Siebers

Cognitive Systems Group
Faculty Information Systems and
Applied Computer Science
Otto-Friedrich-Universität Bamberg

26th International Conference on Inductive Logic Programming
September 6, 2016
When Not to Act?
When Not to Act?
When Not to Act?

Michael Siebers (CogSys Group)

ILP 2016 2 / 11
Outline

- Automated Planning
- Avoidance Expressions
- Inducing Avoidance Expressions
- Proof of Concept
Automated Planning

\[s = \{ \text{on-earth}(a), \text{on-earth}(b), \text{loaded}(c), \text{on-earth}(\text{rocket}) \} \]

\[g = \{ \text{on-moon}(a), \text{on-moon}(b), \text{on-moon}(c) \} \]

Michael Siebers (CogSys Group)
When Not to Act?
ILP 2016
Automated Planning

States

\[s = \{ \text{on-earth}(a), \text{on-earth}(b), \text{loaded}(c), \text{on-earth}(rocket) \} \]
Automated Planning

States

\[s = \{\text{on-earth}(a), \text{on-earth}(b), \text{loaded}(c), \text{on-earth}(\text{rocket})\} \]

Goal

\[g = \{\text{on-moon}(a), \text{on-moon}(b), \text{on-moon}(c)\} \]
Automated Planning

When Not to Act?

Actions

fly
Pre: on-earth(rocket)
Eff: on-moon(rocket),
 ¬on-earth(rocket)
Avoidance Expressions

Basics

- formula
- relates to
 - state
 - action
 - goal

Syntax

-state marker: \(s(l) \)

-goal marker: \(g(l) \)

\(\neg, \land, \lor, \forall, \exists \)

Avoid unloading \(a \):

\[g(on-moon(a)) \land s(on-earth(rocket)) \]

Michael Siebers (CogSys Group)

When Not to Act?

ILP 2016 6 / 11
Avoidance Expressions

Basics

- formula
- relates to
 - state
 - action
 - goal

Syntax

- state marker :s(l)
- goal marker :g(l)
- ¬, ∧, ∨, ∀, ∃
Avoidance Expressions

Basics
- formula
- relates to
 - state
 - action
 - goal

Syntax
- state marker :s(l)
- goal marker :g(l)
- ¬, ∧, ∨, ∀, ∃

Avoid unloading a
:g(on-moon(a)) ∧ :s(on-earth(rocket))
Inducing Avoidance Expressions

Examples

- state-action-goal tuples
- exhaustive exploration
Inducing Avoidance Expressions

Examples
- state-action-goal tuples
- exhaustive exploration

ILP
- state id
- extend and replicate predicates
- target predicate
Induction Example

When Not to Act?

Michael Siebers (CogSys Group)

ILP 2016 8 / 11
Induction Example

State \(s_5 \)

\[
\begin{align*}
&\text{s-on-earth}(a,s5). \\
&\text{s-on-earth}(b,s5). \\
&\text{s-on-earth}(\text{rocket},s5). \\
&\text{s-loaded}(c,s5). \\
&\text{g-on-moon}(a,s5). \\
&\text{g-on-moon}(b,s5). \\
&\text{g-on-moon}(c,s5).
\end{align*}
\]

Target Relation

\[
\begin{align*}
\text{avoid-fly}(s5).
\end{align*}
\]
Design

- rocket domain
- different problems
- 122 examples
- FOIL
Proof-of-concept

Design
- rocket domain
- different problems
- 122 examples
- FOIL

Avoid fly
$$\exists x(: s(\text{on-earth}(x)) \land : g(\text{on-moon}(x))) \lor$$
$$\exists x(: s(\text{loaded}(x)) \land : g(\text{on-earth}(x)))$$
Take-away Message

If your problem can be encoded as an automated-planning problem then you can learn additional domain knowledge from small problem instances.