Behavior analysis of executed and attacked players in Werewolf game by ILP

Nihon University

Ema Nishizaki Tomonobu Ozaki
Contents

- Werewolf games
 - AI Wolf: an intelligent agent for werewolf
 - Rules of the game
 - Werewolf BBS
- Method
- Results
- Conclusion and Future Work
Contents

• Werewolf games
 ➢ AI Wolf: an intelligent agent for werewolf
 ➢ Rules of the game
 ➢ Werewolf BBS

• Method

• Results

• Conclusion and Future Work
What’s Werewolf game

- One of the multi player party games.
- Such as “Mafia game”.
- A human player lie and persuade him/her in Werewolf game.
- To realize AI for playing the game several research have been reported recently in Japan.

“artificial intelligence in Werewolf”
http://www.amazon.co.jp/dp/4627853718

aiwolf
Rules 1/4 ~ Teams ~

- Two teams, **werewolf** and **villager**.

 Werewolves: rich information minority
 - recognize their teammates

 Villagers: less information majority
 - don’t know other player at all

![Diagram showing villagers and werewolves]
Rules 2/4 ~ Phases ~

Iterates two phases, **day** and **night**.

- **Day**: discussion for deciding a player to be executed
- **Night**: attack of the player by a werewolf

- Executed or attacked players get kicked out of the game.

Who is a Werewolf !?
Rules 3/4 ~ Winning ~

- **Villagers** : Execute all werewolves.
- **Werewolves** : Make the survival number of villagers be the same as that of werewolves.

villagers win

- villager : 3
- werewolf : 0

werewolves win

- villager : 2
- werewolf : 2
Rules 4/4 ~ Special ability ~

- Villagers
 - seer
 - medium
 - hunter
 - disadvantage
 - less information

- Werewolves
 - rich information

Villagers have special ability
Tried extract characteristics behavior of particular players.

A target to executed players, attacked players, and players who receive a vote.

- executed
- attacked
- receive a vote
Werewolf BBS

- Online community website
- Text only
- No voice, no video message

http://www.wolfg.x0.com/index.rb
Walter says that Moritz is villager.

Regina says that Pamela is villager.

Clara says that Moritz is werewolf.

Clara estimates that Regina is werewolf.

Three seers
real seer : 1 player
fake seer : 2 players

contradict !!
Contents

• Werewolf games
 ➢ AI Wolf: an intelligent agent for werewolf
 ➢ Rules of the game
 ➢ Werewolf BBS

• Method

• Results

• Conclusion and Future Work
Facts

- **coming out**: a coming-out of the role
- **estimate**: an estimate of other player’s role
- **divined**: a report of the divination
- **inquested**: a report of the inquest
- **guarded**: a report of the guard
- **question**: a player’s question to other player’s
- **answer**: an answer of question by a player’s
- **agree**: a player’s agreement to other player’s
- **disagree**: a player’s disagreement to other player’s
- **line**: an estimation of that two player’s belong to the same team
- **unline**: an estimation of that two player’s belong to different team
- **disrelation**: a backstabbing within werewolf teams
Rules

\[\text{Pred}(\text{Game:Day, N, Player, Args} \cdots) :\]
\[\text{prev_days(N), PDay is Day - N,} \]
\[\text{Pred}(\text{Game:PDay, Player, Args} \cdots). \]

\[\text{prev_days(N)} :\]
\[\text{member(N, [0,1, 2, 3])} \]

For example

\[\text{comingout(Game:Day, N, Player, Role) :}\]
\[\text{prev_days(N), PDay is Day - N,} \]
\[\text{comingout(Game:PDay, Player, Role).} \]
Data Set

<table>
<thead>
<tr>
<th>Winner</th>
<th>number of game</th>
<th>average number of days</th>
<th>average number of utterances</th>
</tr>
</thead>
<tbody>
<tr>
<td>villager</td>
<td>3</td>
<td>7</td>
<td>1166.6</td>
</tr>
<tr>
<td>werewolf</td>
<td>3</td>
<td>8</td>
<td>1234.0</td>
</tr>
</tbody>
</table>

Table1. details of data set

<table>
<thead>
<tr>
<th>target</th>
<th>positive example</th>
<th>negative example</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>executed</td>
<td>39</td>
<td>528</td>
<td>567</td>
</tr>
<tr>
<td>attacked</td>
<td>27</td>
<td>505</td>
<td>532</td>
</tr>
<tr>
<td>vote</td>
<td>89</td>
<td>478</td>
<td>567</td>
</tr>
</tbody>
</table>

Table2. Positive and Negative examples
Contents

• Werewolf games
 ➢ AI Wolf: an intelligent agent for werewolf
 ➢ Rules of the game
 ➢ Werewolf BBS

• Method

• Results

• Conclusion and Future Work
Result

<table>
<thead>
<tr>
<th>target</th>
<th>number of rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>executed</td>
<td>28</td>
</tr>
<tr>
<td>attacked</td>
<td>23</td>
</tr>
<tr>
<td>vote</td>
<td>53</td>
</tr>
</tbody>
</table>

Table 3. number of rules

By Aleph

(http://www.cs.ox.ac.uk/activities/machinelearning/Aleph/aleph)
Result 1 a rule of executed players

X is executed player.

executed(Game:Day, X) :-
 line(Game:Day, 0, X, A, B),
 disagree(Game:Day, 0, C, D),
 answer(Game:Day, 1, A, C).
Result 2 a rule of executed players

X is executed player.

executed(Game:Day, X) :-
estimate(Game:Day, 2, C, X, lunatic),
estimate(Game:Day, 1, B, X, lunatic),
estimate(Game:Day, 0, X, A, werewolf).
Contents

• Werewolf games
 ➢ AI Wolf: an intelligent agent for werewolf
 ➢ Rules of the game
 ➢ Werewolf BBS

• Method

• Results

• Conclusion and Future Work
Conclusion

- Analysis log of Werewolf BBS.
- Apply inductive logic programming to three classification problems. (past behaviors of plural players)

Future Work

- Incorporate certain predicates representing each player’s view and intention. (Each player has different information.)
- Employ answer set programming. (Suitable for agent modeling) (Because more advanced framework is expected for AI.)