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Abstract. Lifted relational neural networks (LRNNs) are a flexible neural-
symbolic framework based on the idea of lifted modelling. In this paper
we show how LRNNs can be easily used to declaratively specify and solve
a learning problem in which latent categories of entities and properties
need to be jointly induced.

1 Introduction

Lifted models, such as Markov logic networks (MLNs [9]), are first-order rep-
resentations that define patterns from which specific (ground) models can be
unfolded. For example, in an MLN we may express the pattern that friends of
smokers tend to be smokers, which then constrains the probabilistic relationships
between specific individuals in the derived ground Markov network. Inspired by
this idea, in [11] we introduced a method that uses weighted relational rules for
learning feed-forward neural networks, called Lifted Relational Neural Networks
(LRNNs). This approach differs from standard neural networks in two impor-
tant ways: (i) the network structure is derived from symbolic rules and thus has
an intuitive interpretation, and (ii) the weights of the network are tied to the
first-order rules and are thus shared among different neurons.

In this paper, we show how LRNNs can be used to learn a latent category
structure that is predictive in the sense that the properties of a given object
can be largely determined by the category to which that object belongs, and
dually, the objects satisfying a given property can be largely determined by the
category to which that property belongs. This enables a form of transductive
reasoning which is based on the idea that similar objects have similar properties.
The proposed approach is similar in spirit to [5], which uses second-order MLNs
instead. However, the use of LRNNs has an important advantage for learning
latent concepts. This is because, being a non-probabilistic model, LRNNs do not
need to invoke costly EM algorithms and they can therefore be more efficient.
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2 Preliminaries: Lifted Relational Neural Networks

A lifted relational neural network (LRNN) N is a set of weighted definite first-
order clauses. Let HN be the least Herbrand model of the classical theory {α :
(α,w) ∈ N}, with N an LRNN. We define the grounding of N as N = {(hθ ←
b1θ ∧ · · · ∧ bkθ, w) : (h← b1 ∧ · · · ∧ bk, w) ∈ N and {hθ, b1θ, . . . , bkθ} ⊆ H}.

Definition 1. Let N be a LRNN, and let N be its grounding. Let g∨, g∧ and
g∗ be functions4 from

⋃∞
i=1 Ri to R. The ground neural network of N is a feed-

forward neural network constructed as follows.

– For every ground atom h occurring in N , there is a neuron Ah with activation
function g∨, called atom neuron.

– For every ground fact (h,w) ∈ N , there is a neuron F(h,w), called fact neu-
ron, which has no input and always outputs the constant value w.

– For every ground rule (hθ ← b1θ ∧ · · · ∧ bkθ, w) ∈ N , there is a neuron
Rhθ←b1θ∧···∧bkθ with activation function g∧, called rule neuron. It has the
atom neurons Ab1θ, . . . , Abkθ as inputs, all with weight 1.

– For every rule (h← b1∧· · ·∧bk, w) ∈ N and every hθ ∈ H, there is a neuron
Agghθ(h←b1∧···∧bk,w) with activation function g∗, called aggregation neuron. Its
inputs are all rule neurons Rhθ′←b1θ′∧···∧bkθ′ where hθ = hθ′ with all weights
equal to 1.

– Inputs of an atom neuron Ahθ are the aggregation neurons Agghθ(h←b1∧···∧bk,w)

and fact neurons F(hθ,w), with the input weights determined by the outputs
of the aggregation and fact neurons.

Depending on the used families of activation functions g∧, g∨ and g∗, we can
obtain neural networks with different behavior. In this paper we will use:

g∧(b1, . . . , bk) = sigm
( k∑
i=1

bi − k + b0

)
g∨(b1, . . . , bk) = sigm

( k∑
i=1

bi + b0

)
g∗(b1, . . . , bm) = max

i
bi

Note that g∧ and g∨ are closely related to the conjunction and disjunction from
 Lukasiewicz logic, which is in accordance with the intuition that g∧ should only
have a high output if all its inputs are high, while g∨ should be high as soon as
one of the inputs is high.

When the given LRNN contains loops, the resulting ground neural network
will be recurrent. As recurrent neural networks are more difficult to train, we
break the loops and partially expand the recursion; we omit the details.

3 Learning predictive categories

Let a set of entities be given, and for each entity, a list of properties that it
satisfies. The basic assumption underlying our model is that there exist some

4 These represent aggregation operators that can take a variable number of arguments.
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(possibly overlapping) categories, such that every entity can be described ac-
curately enough by its soft membership to each of these categories. We fur-
thermore assume that these categories can themselves be organised in a set of
higher-level categories. The idea is that the category hierarchy should allow us
to predict which properties a given objects has, where the properties associated
with higher-level categories are typically (but not necessarily) inherited by their
sub-categories. To improve the generalization ability of our method, we assume
that a dual category structure exists for properties. The main task we consider
is to learn suitable (latent) category structures from the given input data.

To encode the above described model in a LRNN, we proceed as follows. We
assume that the input is encoded as a set of facts of the form (HasProperty(e, p),
±1.0). For every entity e and for each category c at the lowest level of the
category hierarchy, we construct the following ground rule:

wec : IsA(e, c)

Note that weight wec intuitively reflects the soft membership of e to the category
c; it will be determined when training the ground network. Similarly, for each
category c1 at a given level and each category c2 one level above, we add the
following ground rule:

wc1c2 : IsA(c1, c2)

In the same way, ground rules are added that link each property to a property
category at the lowest level, and ground rules that link property categories to
higher-level categories. To encode the idea that entity categories should be pre-
dictive of properties, we add the following ground rule for each entity category
ce and each property category cp:

wcecp : HasProperty(ce, cp)

The weights wcecp encode which entity categories are related to which property
categories, and will again be determined when training the ground network. To
encode transitivity of the is-a relationship, we simply add the following rule

wisa : IsA(A,C)← IsA(A,B), IsA(B,C)

To encode that the properties of entities are typically determined by their cate-
gory, we add the next rule for each entity cluster ce and property cluster cp:

w′cecp : HasProperty(A,B)← IsA(A, ce), IsA(B, cp),HasProperty(ce, cp)

We train the model using SGD as described in [11]. In particular, in a LRNN,
there is a neuron for any ground literal which is logically entailed by the rules
and facts in the LRNN. and the output of this neuron represents the truth value
of this literal Therefore if we want to train the weights of the LRNN, we just
optimize the weights of the network w.r.t. a loss function such as the mean
squared error, where the loss function is computed from the desired truth values
of the query literals and the outputs obtained from the respective atom neurons
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4 Evaluation

To evaluate the potential of the proposed method, we have used the Animals
dataset5 which describes 50 animals in terms of 85 Boolean features, such as
fish, large, smelly, strong, and timid. This dataset was originally crated in [7],
and was used among others for evaluating a related learning task in [5]. For both
objects and properties, we have used two levels of categories, with in both cases
three categories at the lowest level and two categories at the highest level.

Figures 1 and 2 show the category membership degrees projected to first
two principal components of a number of entities and properties, for the three
lowest-level categories. Note that the membership degrees can be interpreted as
defining a vector-space embedding. We can see, for instance, that sea mammals
are clustered together, and that predators tend to be separated from herbivores.
In Figure 2, we have highlighted two types of properties: colours and teeth-types.
Note that these do not form clusters (e.g. a cluster of colours) but they represent,
as prototypes, different clusters of properties which tend to occur together. For
instance, blue is surrounded by properties which are typically held by water
mammals, whereas white and red occur together with stripes, nocturnal, pads,
and whereas gray occurs together with small and weak etc. We also evaluated
the predictive ability of this model. We randomly divided the facts in the dataset
into two halves, trained the model on one half and tested it on the other one,
obtaining AUC ROC of 0.77. We also performed an experiment with a 90-10
splits, in order to be able to directly compare our results with the results from
[5], and we obtained the same AUC PR 0.8 as reported therein (and AUC ROC
0.86).

5 Discussion

The proposed model essentially relies on the assumption that similar entities
tend to have similar properties, for some similarity function which is learned
implicitly in terms of category membership degrees. It is possible to augment
this form of inference with other models of plausible reasoning, such as reasoning
based on analogical (and other logical) proportions [6,8]. Moreover, as in [2], we
could take into account externally obtained similarity degrees, using rules such as
wl : HasProperty(A,B) ← HasProperty(C,B),Similar(A,C, l), where l denotes
a certain level of similarity. Depending on the chosen activation function, such a
network would behave similarly to 1-NN or similarly to kernel regression.Another
natural extension would be to consider (subject, predicate, object) triples, and
to learn soft categories for predicates, as well as for subjects and objects.

The model considered in this paper is related to statistical predicate invention
[5] which relies on jointly clustering objects and relations. The dual represen-
tation of object and property categories is also reminiscent of formal concept
analysis [4]. LRNNs themselves are also related to the long stream of research
in neural-symbolic integration [1] and more recent approaches such as [10,3].

5 Downloaded from https://alchemy.cs.washington.edu/data/animals/.
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Fig. 1. Embedding of entities (animals, only a subset of entities is displayed). Several
homogeneous groups of animals are highlighted: sea mammals (blue), large herbivores
(green), rodents (violet), and other predators (red).

6 Conclusions and Outlook

We have illustrated how the declarative and flexible nature of LRNNs can be used
to esily encode non-trivial learning scenarios. The model that we considered in
this paper jointly learns predictive categories of entities and of their properties.
The main strength of this approach lies in the ease with which the model can
be extended to more complicated relational settings, which we plan to show in
a longer version of this paper. We also plan to conduct a thorough experimental
comparison of our method with state-of-the-art SRL methods such as MLNs.
Finally, we also plan to use an extended version of this model as a component
in an NLP pipeline.
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