
Distributional Learning of Regular Formal
Graph System of Bounded Degree

Takayoshi Shoudai1⋆, Satoshi Matsumoto2, and Yusuke Suzuki3

1 Faculty of International Studies, Kyushu International University, Japan
shoudai@isb.kiu.ac.jp

2 Faculty of Science, Tokai University, Japan
3 Graduate School of Information Sciences, Hiroshima City University, Japan

Abstract. In this paper, we describe how distributional learning tech-
niques can be applied to formal graph system (FGS) languages. Formal
graph system is a logic program that deals with term graphs instead of
the terms of first-order predicate logic. We show that the FGS languages
of bounded degree with the 1-finite context property (1-FCP) and the
bounded treewidth property can be learned from positive data and mem-
bership queries.

1 Introduction

In the field of algorithmic learning theory, many models and algorithmic tech-
niques for learning from examples have been developed. Distributional learning
was proposed firstly by Clark and Eyraud [2] to learn a subclass of context-
free grammars efficiently. Recently distributional learning have been developed
in learning of various subclasses of context-free grammars [7]. Those techniques
were extended to languages that have more complex structures [4].

On the other hand, graph grammar has been developed as an extension
to graphs from a string of the concept of grammatical forms. Graph grammar
has been applied to a wide range of fields including pattern recognition, image
analysis, and so on. Uchida et al. [6] introduced a framework called formal graph
system (FGS, for short) as one of the graph grammars. An FGS is a logic program
that deals with term graphs, which can be considered to be a kind of hypergraphs,
instead of the terms of first-order predicate logic.

For the learning of graph grammar, Okada et al. [5] showed that some classes
of graph pattern languages is MAT learnable in polynomial time. There are
some early studies in other, but discussions on computational learning of graph
grammars are not sufficient yet. In this paper, by the existing distributional
learning techniques [7], we show that the FGS languages of bounded degree with
the 1-finite context property (1-FCP) [3] and the bounded treewidth property
can be learned from positive data and membership queries.

⋆ This work was partially supported by JSPS KAKENHI (26280087) and MEXT
KAKENHI (24106010).

2

2 Preliminaries

For a set or a list S, |S| denotes the number of all elements that are contained in
S. For a set V , V ∗ denotes the set of all finite lists consisting of elements in V .
For a list S and an integer i (1 ≤ i ≤ |S|), S[i] denotes the i-th member of S. Let
Σ and Λ be finite alphabets. Let X be an infinite alphabet, whose elements are
called variables. We assume that each symbol x ∈ X has a nonnegative integer
rank(x), Σ ∩X = ∅ and Λ ∩X = ∅.

Definition 1 (Term graph). A term graph g = (V,E, φ, ψ,H, λ, ports) is de-
fined as follows:

1. (V,E) is a vertex- and edge-labeled (directed or undirected) graph,
2. φ : V → Σ and ψ : E → Λ are vertex- and edge-labeling functions,
3. H is a finite multiset of hyperedges that are elements in 2V ,
4. λ : H → X is a variable-labeling function, and
5. ports : H → V ∗ is a mapping s.t. for every h ∈ H, ports(h) is a list of

rank(λ(h)) distinct vertices in V . These vertices are called the ports of h.

We denote the 7-tuple of a term graph g by (Vg, Eg, φg, ψg,Hg, λg, portsg).
A term graph g is called ground if Hg = ∅. λg and portsg are empty functions ∅.
For σ ∈ V ∗

g , φg(σ) denotes (φg(v1), . . . , φg(vℓ)). Let d be a nonnegative integer.
G(Σ,Λ,X) (resp. Gd(Σ,Λ,X)) denotes the set of all term graphs (resp. all term
graphs of maximum degree d) over ⟨Σ,Λ,X⟩. Moreover, G(Σ,Λ) (resp. Gd(Σ,Λ))
denotes the set of all ground term graphs (resp. all gournd term graphs of maxi-
mum degree d). A term graph g is a star term graph if Eg = ∅ and Hg = {h} for
some hyperedge h s.t. h = Vg. For a star term graph g, hg denotes the unique
hyperedge of g.

Definition 2 (Formal graph system (FGS)). Let g1, . . . , gn ∈ G(Σ,Λ,X)
(n ≥ 1). Let Πn be a finite set of n-ary predicate symbols. Let Π =

∪
i≥0Πi.

For p ∈ Πn, we say that p(g1, . . . , gn) is an atom. Let A,B1, . . . , Bm be atoms
(m ≥ 0). A graph rewriting rule over ⟨Σ,Λ,X,Π⟩ is a clause of the form A←
B1, . . . , Bm. A formal graph system (FGS) is denoted by S = (Σ,Λ,X,Π, Γ),
where Γ a finite set of graph rewriting rules over ⟨Σ,Λ,X,Π⟩.

Let f be a term graph in G(Σ,Λ,X) and σ an ordered list of ℓ distinct vertices
in Vf (0 ≤ ℓ ≤ |Vf |). A pair [f, σ] is called a term graph fragment . If f is a ground
term graph, we call it a ground term graph fragment . Let F(Σ,Λ) be the set of all
ground term graph fragments. For a nonnegative integer d, Fd(Σ,Λ) = {[f, σ] ∈
F(Σ,Λ) | f ∈ Gd(Σ,Λ)}. For a term graph fragment [f, σ] and a variable x ∈ X
with rank(x) = |σ|. Let σ = (v1, . . . , vℓ) (ℓ ≥ 1). The binding x := [f, σ] is
defined to be an operation on a term graph g that works in the following way:
For each h ∈ Hg with λg(h) = x, let f ′ = (Vf ′ , Ef ′ , φf ′ , ψf ′ ,Hf ′ , λf ′ , portsf ′)
be a copy of f . For a vertex v ∈ Vf , we denote the corresponding copy vertex
of f ′ by v′. We attach f ′ to g by removing the hyperedge h from Hg and by
identifying the ports u1, . . . , uℓ of h in g with v′1, . . . , v

′
ℓ in f ′, respectively. We

set the new vertex-label of ui to be the original vertex-label of ui, i.e., φg(ui).

3

a a

a

a

a

a a

x
1

x
2

1 2

2 1

a a

a

a

a aau
1

u
4

u
2

u
3

w
1

w
2

w
3

f
1

f
2

gG

Fig. 1. A graph G can be obtained from g by applying a substitution θ = {x1 :=
[f1, (u1, u4)], x2 := [f2, (w1, w3)]}, i.e., gθ is isomorphic to G.

A substitution θ is a finite set of bindings {x1 := [f1, σ1], . . . , xn := [fn, σn]},
where xi’s are mutually distinct variables in X and each fi has no hyper-
edge labeled with a variable in {x1, . . . , xn}. For a substitution θ and an atom
p(g1, . . . , gn), we define p(g1, . . . , gn)θ to be p(g1θ, . . . , gnθ). For a graph rewrit-
ing rule A ← B1, . . . , Bm, we also define (A ← B1, . . . , Bm)θ to be Aθ ←
B1θ, . . . , Bmθ. We give an example of term graphs and substitutions in Fig. 1.
For the term graphs in those figures, a hyperedge is represented by a box with
lines to its ports. The order of the ports is indicated by digits at these lines.

Let S = (Σ,Λ,X,Π, Γ) be an FGS. Let δ be a function from a predicate
symbol p ∈ Π to a finite list of distinct symbols (a1, . . . , ak) ∈ Σ∗ for some k
(k ≥ 0). Not only the symbols ai (0 ≤ i ≤ k) but also the length k depend on
p. We call the function δ a pointer of predicate symbols. Let δ(Π) be the set of
all symbols appearing in δ(p) for all predicates p ∈ Π.

Definition 3 (Regular FGS). We say that an FGS S = (Σ,Λ,X,Π, Γ) is
regular with a pointer δ if all graph rewriting rules in Γ are of the form q0(g0)←
q1(g1), . . . , qm(gm) that satisfies the following conditions:

1. All qi ∈ Π (0 ≤ i ≤ m) are 1-ary predicate symbols.
2. Each gi (i = 1, . . . ,m) is a star term graph s.t. φgi(portsgi(hgi)) = δ(qi).

3. There is a list (v1, . . . , v|δ(q0)|) ∈ V
|δ(q0)|
g0 s.t. φg0(v1, . . . , v|δ(q0)|) = δ(q0) and

for any u ∈ Vg0 \ {v1, . . . , v|δ(q0)|}, φg0(u) ∈ Σ \ δ(Π).
4. λg0(Hg0) =

∪m
i=1 λgi(Hgi) and λgi(Hgi) ∩ λgj (Hgj) = ∅ for 1 ≤ i < j ≤ m.

5. For every h1, h2 ∈ Hg0 , h1 ̸= h2 iff λg0(h1) ̸= λg0(h2).

A regular FGS S = (Σ,Λ,X,Π, Γ) with a pointer δ is denoted by (S, δ) or
((Σ,Λ,X,Π, Γ), δ).

Let f0 be a ground term graph of one vertex or two vertices with one edge,
f1 a term graph with two hyperedges and no edge, and f2, f3 star term graphs.
Let p0, p1, p2, p3 be unary predicate symbols. A regular FGS (S, δ) is in Chomsky
normal form (CNF) if every graph rewriting rule of S is of the form.

– Terminal rule: p0(f0)←,
– Binary rule: p1(f1)← p2(f2), p3(f3).

Definition 4 (Regular FGS language). Let S = (Σ,Λ,X,Π, Γ) be an FGS.
A relation Γ ⊢ C is defined recursively in the following way:

4

1. If C ∈ Γ , then Γ ⊢ C holds.
2. If Γ ⊢ C, then Γ ⊢ Cθ for an arbitrary substitution θ.
3. If Γ ⊢ A ← B1, . . . , Bn and for some i (1 ≤ i ≤ n), Γ ⊢ Bi ← C1, . . . , Cm,

then Γ ⊢ A← B1, . . . , Bi−1, C1, . . . , Cm, Bi+1, . . . , Bn holds.

Let (S, δ) be a regular FGS and p a unary predicate symbol in Π. We define the
graph language of (S, δ, p) as GL(S, δ, p) = {g ∈ G(Σ,Λ) | Γ ⊢ p(g)←}. We say
that a graph language L ⊆ G(Σ,Λ) is definable by regular FGS or a regular FGS
language if such a triplet (S, δ, p) exists.

3 Learning Regular FGS with 1-Finite Context Property

We assume that our learner has an access to an oracle MemL∗ who answers
membership queries. The queries ask whether or not an arbitrary ground term
graph g ∈ G(Σ,Λ) is included in a target graph language L∗. The answer is,
denoted by MemL∗(g), either yes or no.

Let g = (Vg, Eg, φg, ψg, ∅, ∅, ∅) be a ground term graph and σ = (v1, . . . , vℓ)
a list of vertices in Vg (1 ≤ ℓ ≤ |Vg|). Let x be a variable label in X that does
not appear anywhere. For the term graph fragment [g, σ], we denote by g(σ) the
term graph (Vg, Eg, φg, ψg, {h}, λg, portsg) where h = {v1, . . . , vℓ}, λg(h) = x,
and portsg(h) = σ. In order to make the argument easier, we assume that g has
no isolated vertex. Let {Eα, Eβ} be a partition of Eg. Let Vα be the set of all
endpoints of edges in Eα and Vβ the set of all endpoints of edges in Eβ . Let σ be
one of the ordered list consisting of all the vertices in Vα ∩ Vβ . Then, we obtain
two term graph fragments [α, σ] and [β, σ]. We easily see that α(σ){x := [β, σ]}
and β(σ){x := [α, σ]} are isomorphic to g.

For [α, σα], [β, σβ] ∈ F(Σ,Λ), we define an operation ⊙ as follows:

[α, σα]⊙ [β, σβ] =

{
α(σα){x := [β, σβ]} if |σα| = |σβ |,
undefined otherwise.

Note that in general, [α, σα]⊙ [β, σβ] is not always equivalent to [β, σβ]⊙ [α, σα],
because the vertex labels in the first operand always survive by any binding. If
φα(σα) = φβ(σβ), [α, σα]⊙ [β, σβ] = [β, σβ]⊙ [α, σα] holds.

Let d be a nonnegative integer. For a nonempty finite set of ground term
graphs D ⊆ Gd(Σ,Λ), let

Sub(D) = {[β, σβ] ∈ Fd(Σ,Λ) | ∃[α, σα] ∈ Fd(Σ,Λ)[[α, σα]⊙ [β, σβ] ∈ D]},
Con(D) = {[α, σα] ∈ Fd(Σ,Λ) | ∃[β, σβ] ∈ Fd(Σ,Λ)[[α, σα]⊙ [β, σβ] ∈ D]}.

Note that both |Sub(D)| and |Con(D)| are of polynomial size w.r.t. |D|. If
[β, σβ] ∈ Sub(D) with σβ = (v1, . . . , vℓ), any ground term graph fragment
[(Vβ , Eβ , φ

′
β , ψβ , ∅, ∅, ∅), σβ] with φ′

β |(Vβ \ {v1, . . . , vℓ}) = φβ |(Vβ \ {v1, . . . , vℓ})
is also in Sub(D). Therefore, Con(D) ⊆ Sub(D) holds.

Let (S, δ) = ((Σ,Λ,X,Π, Γ), δ) be a regular FGS. For a term graph f and
q ∈ Π, if for all i (1 ≤ i ≤ |δ(q)|), ∃vi ∈ Vf s.t. φf (vi) = δ(q)[i], let φ−1

f (δ(q)) =

(v1, . . . , v|δ(q)|), otherwise let φ−1
f (δ(q)) = ().

5

Algorithm 1 1-FCP-RFGSL
1: Let K := ∅, F := ∅;
2: for n = 1, 2, 3, . . . do
3: Let D = {g1, g2, . . . , gn};
4: if D ̸⊆ GL(S(F,K), δ, p) then

/* The above line can be determined by the parsing algorithm in [1]. */
5: Let F := Con(D);
6: end if
7: Let K := Sub(D);
8: output (S(F,K), δ, p);
9: end for

Definition 5 (1-FCP). For a regular FGS (S, δ) = ((Σ,Λ,X,Π, Γ), δ), p, q ∈
Π and a ground term graph fragment [g, σg] ∈ Fd(Σ,Λ), we let

C(S, δ, p, q, g) = {f ∈ Gd(Σ,Λ) | [g, σg]⊙ [f, φ−1
f (δ(q))] ∈ GL(S, δ, p)}.

We say that (S, δ) and p have 1-FCP iff for every q ∈ Π, there is a ground term
graph fragment [g, σg] ∈ Fd(Σ,Λ) s.t. C(S, δ, p, q, g) = GL(S, δ, q).

Definition 6 (1-FCP regular FGS language class). 1-FCP-RFGSL(w, d)
denotes the set of all regular FGS languages L ⊆ Gd(Σ,Λ) that satisfies the
following conditions:

1. L is definable by ((Σ,Λ,X,Π, Γ), δ, p) that has the 1-FCP,
2. Γ is written in Chomsky normal form, and
3. The treewidth of the term graphs in Γ is at most w. Therefore, the maximum

length of ports of the hyperedges in Γ is also at most w.

Let L∗ ⊆ G(Σ,Λ) be a target regular FGS language. In Algorithm 1 (1-FCP-
RFGSL), we construct a regular FGS S(F,K) = (Σ,Λ,X,Π, Γ), pointer δ, and
initial predicate p in the following way:

– Σ = Σ′ ∪{s1, . . . , sw}, where Σ′ = {a | ∃gi ∈ D, ∃v ∈ Vgi [φgi(v) = a]} and
Σ′ ∩ {s1, . . . , sw} = ∅.

– Λ = {a | ∃gi ∈ D, ∃e ∈ Egi [ψgi(e) = a]}.
– X: We use a new variable label only when it needed.
– Π = {Jα, σαK | [α, σα] ∈ F ⊆ Con(D)}. Let J∅, ()K be the initial predicate p.
– δ, Γ : In Table 1, we describe the pointer δ(q) for each predicate q in Π and
the graph rewriting rules in Γ . In the table, we use the following notations.
Let k, ℓ be two positive integers (k ≤ ℓ) and Pk,ℓ the set of all list of k distinct
positive integers that are less than or equal to ℓ. Let σ = (a1, . . . , ak) ∈ Pk,ℓ.
For a list of elements ν = (v1, . . . , vℓ) (k ≤ ℓ), χσ(ν) denotes (va1 , . . . , vak

)
and χ̄σ(ν) denotes the list obtained from ν by deleting va1 , . . . , vak

.

Theorem 1. Let w and d be constant integers greater than zero. The class 1-
FCP-RFGSL(w, d) is identifiable in the limit with polynomial time update by
using membership queries.

6

Terminal rules p0(f0)← in (S(F,K), δ, p):

p0 δ(p0) f0 ConditionJg0, σg0K (s1) ({v1}, ∅, φ, ∅, ∅, ∅, ()) [g0, σg0]⊙ [f0, (v1)] ∈ L∗
|σg| = 1 φ(v1) = s1Jg0, σg0K (s1) ({v1, v2}, {(v1, v2)}, φ, ψ, ∅, ∅, ()) [g0, σg0]⊙ [f0, (v1)] ∈ L∗
|σg| = 1 φ(v1) = s1, φ(v2) ∈ Σ′Jg0, σg0K (s1, s2) ({v1, v2}, {(v1, v2)}, φ, ψ, ∅, ∅, ()) [g0, σg0]⊙ [f0, (v1, v2)] ∈ L∗
|σg| = 2 φ(v1) = s1, φ(v2) = s2

Binary rules p1(f1)← p2(f2), p3(f3) in (S(F,K), δ, p)

pi (i = 2, 3) δ(pi) (i = 2, 3) fi (i = 2, 3, j = 1, . . . , ℓi)Jgi, σgiK
|σgi | = ℓi

(s1, . . . , sℓi) fi = ({vi,1, . . . , vi,ℓi}, ∅, φi, ∅, {hi}, λi, porti), where
φi(vi,j) = sj , λ2(h2) ̸= λ3(h3), portsi(hi)[j] = vi,j .

p1 δ(p1) f1Jg1, σg1K
|σg1 | = ℓ1

(s1, . . . , sℓ1) f1 = [f2, χσ2(ports2(h2))]⊙ [f3, χσ3(ports3(h3))], where
σi ∈ Pk,|portsi(hi)| (i = 2, 3) for some k. Let ν =
portsf2(h2) ·χ̄σ3(portsf3(h3)) and σ1 ∈ Pℓ1,|ν|. The ver-
tices in ν are relabeled so that χσ1(ν) = (s1, . . . , sℓ1)
and χ̄σ(ν) ∈ Σ′|ν|−ℓ1 .

Condition

For ∀[τ2, στ2], [τ3, στ3] ∈ F , if [g2, σg2]⊙ [τ2, στ2] ∈ L∗ and [g3, σg3]⊙ [τ3, στ3] ∈ L∗,
then [g1, σg1] ⊙ [[τ2, χσ2(στ2)] ⊙ [τ3, χσ3(στ3)], ξ] ∈ L∗, where ξ = χσ1(χσ2(στ2) ·
χ̄σ3(στ3)).

Table 1. (S(F,K), δ, p): There are three types of terminal rules and one type of binary
rule. Each graph rewriting rule is created if the corresponding condition is satisfied.
All conditions can be determined by asking to the membership oracle MemL∗ .

References

1. D. Chiang, J. Andreas, D. Bauer, K. M. Hermann, B. Jones, and K. Knight.
Parsing graphs with hyperedge replacement grammars. Proc. 51st Meeting of the
ACL. Marie-Catherine de Marneffe (ACL 2013), 2013.

2. A. Clark and R. Eyraud. Polynomial identification in the limit of substitutable
context-free languages. JMLR 8, pp. 1725–1745, 2007.

3. A. Clark. A learnable representation for syntax using residuated lattice. Proc.
FG2009, LNAI 5591 , pp. 183–198, 2009.

4. A. Kasprzik and R. Yoshinaka. Distributional learning of simple context-free tree
grammars. Proc. ALT2011, LNAI 6925 , Springer, pp. 398–412, 2011.

5. R. Okada, S. Matsumoto, T. Uchida, Y. Suzuki, and T. Shoudai. Exact learning
of finite unions of graph patterns from queries. Proc. ALT 2007, LNAI 4754,
Springer, pp. 298–312, 2007.

6. T. Uchida, T. Shoudai, and S. Miyano. Parallel algorithms for refutation tree
problem on formal graph systems. IEICE Trans. Inform. Syst. E78-D(2), pp. 99–
112, 1995.

7. R. Yoshinaka. Integration of the dual approaches in the distributional learning
of context-free grammars. Proc. LATA2012, LNCS 7183, Springer, pp. 538–550,
2012.

